Go to the first, previous, next, last section, table of contents.


11 Replication in MySQL

11.1 Introduction

One way replication can be used both to increase robustness and speed. For robustness you have two systems and switch to the backup if you have problems with the master. The extra speed is achieved by sending a part of the non-updating queries to the replica server. Of course this only works if non-updating queries dominate, but that is the normal case.

Starting in Version 3.23.15, MySQL supports one-way replication internally. One server acts as the master, while the other acts as the slave. Note that one server could play the roles of master in one pair and slave in the other. The master server keeps a binary log of updates and an index file to binary logs to keep track of log rotation. The slave upon connecting informs the master where it left off sinse the last successfully propogated update, catches up on the updates, and then blocks and waits for the master to notify it of the new updates.

Note that if you are replicating a database, all updates to this database should be done through the master!

On older servers one can use the update log to do simple replication. See section 21.1 Database replication with update log.

11.2 Replication Implementation Overview

MySQL internal replication uses the master-slave approach. One server is designated as the master, while the other ( or others) as slave(s). The master keeps a binary log of updates. See section 21.4 The binary log. The slave connects to the master, catches up on the missed updates, and then starts receiving updates immediately as they come to the master. If the connection is lost, the slave will reconnect. If the master goes down, the slave will keep trying to connect every master-connect-retry seconds until the master comes back up and the connection can be established. The slave keeps track of where it left off in the replication process, so it can use the info in the case it goes down and gets restarted later.

11.3 HOWTO

Below is a quick HOWTO on how to set up replication on your current system:

After you have done the above, the master and the slave(s) should be in sync.

11.4 Replication Features

Below is an explanation of what is supported and what is not:

11.5 Replication Options in my.cnf

If you are using replication, we recommend you to use MySQL Version 3.23.27 or later.

On both master and slave you need to use the server-id option. This sets an unique replication id. You should pick a unique value in the range between 1 to 2^32-1 for each master and slave. Example: server-id=3

The following table has the options you can use for the MASTER:

Option Description
log-bin=filename Write to a binary update log to the specified location. Note that if you give it a parameter with an extension (eg. log-bin=/mysql/logs/replication.log ) versions up to 3.23.24 will not work right during replication if you do FLUSH LOGS . The problem is fixed in 3.23.25. If you are using this kind of log name, FLUSH LOGS will be ignored on binlog. To clear the log, run FLUSH MASTER, and do not forget to run FLUSH SLAVE on all slaves. In 3.23.26 and later versions you should use RESET MASTER and RESET SLAVE
log-bin-index=filename Because the user could issue FLUSH LOGS command, we need to know which log is currently active and which ones have been rotated out and it what sequence. This info is stored in the binary log index file. The default is `hostname`.index . You can use this option if you want to be a rebel. (Example: log-bin-index=db.index)
sql-bin-update-same If set, setting SQL_LOG_BIN to a value will automatically set SQL_LOG_UPDATE to the same value and vice versa.
binlog-do-db=database_name Tells the master it should log updates for the specified database, and exclude all others not explicitly mentioned. (Example: binlog-do-db=some_database)
binlog-ignore-db=database_name Tells the master that updates to the given database should not be logged to the binary log (Example: binlog-ignore-db=some_database)

The following table has the options you can use for the SLAVE:

Option Description
master-host=host Master hostname or IP address for replication. If not set, the slave thread will not be started. (Example: master-host=db-master.mycompany.com)
master-user=username The user the slave thread will us for authentication when connecting to the master. The user must have FILE privilege. If the master user is not set, user test is assumed. (Example: master-user=scott)
master-password=password The password the slave thread will authenticate with when connecting to the master. If not set, an empty password is assumed (Example: master-password=tiger)
master-port=portnumber The port the master is listening on. If not set, the compiled setting of MYSQL_PORT is assumed. If you have not tinkered with configure options, this should be 3306. (Example: master-port=3306)
master-connect-retry=seconds The number of seconds the slave thread will sleep before retrying to connect to the master in case the master goes down or the connection is lost. Default is 60. (Example: master-connect-retry=60)
master-info-file=filename The location of the file that remembers where we left off on the master during the replication process. The default is master.info in the data directory. Sasha: The only reason I see for ever changing the default is the desire to be rebelious. (Example: master-info-file=master.info)
replicate-do-db=database_name Tells the slave thread to restrict replication to the specified database. To specify more than one database, use the directive multiple times, once for each database. Note that this will only work if you do not use cross-database queries such as UPDATE some_db.some_table SET foo='bar' while having selected a different or no database. (Example: replicate-do-db=some_db)
replicate-ignore-db=database_name Tells the slave thread to not replicate to the specified database. To specify more than one database to ignore, use the directive multiple times, once for each database. This option will not work if you use cross database updates. (Example: replicate-ignore-db=some_db)
log-slave-updates Tells the slave to log the updates from the slave thread to the binary log. Off by default. You will need to turn it on if you plan to daisy-chain the slaves.
replicate-rewrite-db=from_name->to_name Updates to a database with a different name than the original (Example: replicate-rewrite-db=master_db_name->slave_db_name
skip-slave-start Tells the slave server not to start the slave on the startup. The user can start it later with SLAVE START.

11.6 SQL commands related to replication

Replication can be controlled through the SQL interface. Below is the summary of commands:

Command Description
SLAVE START Starts the slave thread. (Slave)
SLAVE STOP Stops the slave thread. (Slave)
SET SQL_LOG_BIN=0 Disables update logging if the user has process privilege. Ignored otherwise (Master)
SET SQL_LOG_BIN=1 Re-enable update logging if the user has process privilege. Ignored otherwise (Master)
RESET MASTER Deletes all binary logs listed in the index file, resetting the binlog index file to be empty. In pre-3.23.26 versions, FLUSH MASTER (Master)
RESET SLAVE Makes the slave forget its replication position in the master logs. In pre 3.23.26 versions the command was called FLUSH SLAVE(Slave)
LOAD TABLE tblname FROM MASTER Downloads a copy of the table from master to the slave. (Slave)
CHANGE MASTER TO master_def_list Changes the master parameters to the values specified in master_def_list and restarts the slave thread. master_def_list is a comma-separated list of master_def where master_def is one of the following: MASTER_HOST, MASTER_USER, MASTER_PASSWORD, MASTER_PORT, MASTER_CONNECT_RETRY, MASTER_LOG_FILE, MASTER_LOG_POS. Example:

CHANGE MASTER TO
  MASTER_HOST='master2.mycompany.com',
  MASTER_USER='replication',
  MASTER_PASSWORD='bigs3cret',
  MASTER_PORT=3306;

You only need to specify the values that need to be changed. The values that you omit will stay the same with the exception of when you change the host or the port. In that case, the slave will assume that since you are connecting to a different host or a different port, the master is different, therefore, the old values of log and position are not applicable anymore, and will automatically be reset to an empty string and 0, respectively (the start values). Note that if you restart the slave, it will remember its last master. If this is not desirable, you should delete the `master.info' file before restarting, and the slave will read its master from my.cnf or the command line. (Slave)
SHOW MASTER STATUS Provides status info on the binlog of the master. (Master)
SHOW SLAVE STATUS Provides status info on essential parameters of the slave thread. (Slave)
SHOW MASTER LOGS Only available starting in Version 3.23.28. Lists the binary logs on the master. You should use this command prior to PURGE MASTER LOGS TO to find out how far you should go.
PURGE MASTER LOGS TO 'logname' Available starting in Version 3.23.28. Deletes all the replication logs that are listed in the log index as being prior to the specified log, and removed them from the log index, so that the given log now becomes first. Example:
PURGE MASTER LOGS TO 'mysql-bin.010'
This command will do nothing and fail with an error if you have an active slave that is currently reading one of the logs you are trying to delete. However, if you have a dormant slave, and happen to purge one of the logs it wants to read, the slave will be unable to replicate once it comes up. The command is safe to run while slaves are replicating - you do not need to stop them. You must first check all the slaves with SHOW SLAVE STATUS to see which log they are on, then do a listing of the logs on the master with SHOW MASTER LOGS, find the earliest log among all the slaves ( if all the slaves are up to date, this will be the last log on the list), backup all the logs you are about to delete (optional) and purge up to the target log.

11.7 Replication FAQ

Q: Why do I sometimes see more than one Binlog_Dump thread on the master after I have restarted the slave?

A: Binlog_Dump is a continuous process that is handled by the server the following way:

So if the slave thread stops on the slave, the corresponding Binlog_Dump thread on the master will not notice it until after at least one update to the master ( or a kill), which is needed to wake it up from pthread_cond_wait(). In the meantime, the slave could have opened another connection, which resulted in another Binlog_Dump thread.

The above problem should not be present in Version 3.23.26 and later versions. In Version 3.23.26 we added server-id to each replication server, and now all the old zombie threads are killed on the master when a new replication thread connects from the same slave

Q: How do I rotate replication logs?

A: In Version 3.23.28 you should use PURGE MASTER LOGS TO command after determining which logs can be deleted, and optionally backing them up first. In earlier versions the process is much more painful, and cannot be safely done without stopping all the slaves in the case that you plan to re-use log names . You will need to stop the slave threads, edit the binary log index file, delete all the old logs, restart the master, start slave threads, and then remove the old log files.

Q: How do I upgrade on a hot replication setup?

A: If you are upgrading pre-3.23.26 versions, you should just lock the master tables, let the slave catch up, then run FLUSH MASTER on the master, and FLUSH SLAVE on the slave to reset the logs, then restart new versions of the master and the slave. Note that the slave can stay down for some time - since the master is logging all the updates, the slave will be able to catch up once it is up and can connect.

We plan to make post 3.23.26 versions to be backwards compatible for replication down to Version 3.23.26, so upgrade should be just a matter of plug and play. Of course, as one joke goes, plug and play works usually only 50% of the time - just the plug part. We hope to do much better than that, though.

Q: What issues should I be aware of when setting up two-way replication?

A: MySQL replication currently does not support any locking protocol between master and slave to guarantee the atomicity of a distributed ( cross-server) update. In in other words, it is possible for client A to make an update to co-master 1, and in the meantime, before it propogates to co-master 2, client B could make an update to co-master 2 that will make the update of client A work differently than it did on co-master 1. Thus when the update of client A will make it to co-master 2, it will produce tables that will be different than what you have on co-master 1, even after all the updates from co-master 2 have also propogated. So you should not co-chain two servers in a two-way replication relationship, unless you are sure that you updates can safely happen in any order, or unless you take care of mis-ordered updates somehow in the client code.

Until we implement server_id variable, you cannot have more than two servers in a co-master replication relationship, and you must run mysqld without log-slave-updates (default) to avoid infinite update loops.

You must also realize that two-way replication actually does not improve performance very much, if at all, as far as updates are concerned. Both servers need to do the same amount of updates each, as you would have one server do. The only difference is that there will be a little less lock contention, because the updates originating on another server will be serialized in one slave thread. This benefit, though, might be offset by network delays.

Q: How can I use replication to improve performance of my system?

A: You should set up one server as the master, and direct all writes to it, and configure as many slaves as you have the money and rackspace for, distributing the reads among the master and the slaves.

Q: What should I do to prepare my client code to use performance-enhancing replication?

A: If the part of your code that is responsible for database access has been properly abstracted/modularized, converting it to run with the replicated setup should be very smooth and easy - just change the implementation of your database access to read from some slave or the master, and to awlays write to the master. If your code does not have this level of abstraction, setting up a replicated system will give you an opportunity/motivation to it clean up. You should start by creating a wrapper library /module with the following functions:

safe_ means that the function will take care of handling all the error conditions.

You should then convert your client code to use the wrapper library. It may be a painful and scary process at first, but it will pay off in the long run. All application that follow the above pattern will be able to take advantage of one-master/many slaves solution. The code will be a lot easier to maintain, and adding troubleshooting options will be trivial - you will just need to modify one or two functions, for example, to log how long each query took, or which query, among your many thousands, gave you an error. If you have written a lot of code already, you may want to automate the conversion task by using Monty's replace utility, which comes with the standard distribution of MySQL, or just write your own Perl script. Hopefully, your code follows some recognizable pattern. If not, then you are probably better off re-writing it anyway, or at least going through and manually beating it into a pattern.

Note that, of course, you can use different names for the functions. What is important is having unified interface for connecting for reads, connecting for writes, doing a read, and doing a write.

Q: When and how much can MySQL replication improve the performance of my system?

A: MySQL replication is most benefitial for a system with frequent reads and not so frequent writes. In theory, by using a one master/many slaves setup you can scale by adding more slaves until you either run out of network bandwidth, or your update load grows to the point that the master cannot handle it.

In order to determine how many slaves you can get before the added benefits begin to level out, and how much you can improve performance of your site, you need to know your query patterns, and empirically (by benchmarking) determine the relationship between the throughput on reads ( reads per second, or max_reads) and on writes max_writes) on a typical master and a typical slave. The example below will show you a rather simplified calculation of what you can get with replication for our imagined system.

Let's say our system load consist of 10% writes and 90% reads, and we have determined that max_reads = 1200 - 2 * max_writes, or in other words, our system can do 1200 reads per second with no writes, our average write is twice as slow as average read, and the relationship is linear. Let us suppose that our master and slave are of the same capacity, and we have N slaves and 1 master. Then we have for each server ( master or slave):

reads = 1200 - 2 * writes ( from bencmarks)

reads = 9* writes / (N + 1) ( reads split, but writes go to all servers)

9*writes/(N+1) + 2 * writes = 1200

writes = 1200/(2 + 9/(N+1)

So if N = 0, which means we have no replication, our system can handle 1200/11, about 109 writes per second ( which means we will have 9 times as many reads to to the nature of our application)

If N = 1, we can get up to 184 writes per second

If N = 8, we get up to 400

If N = 17, 480 writes

Eventually as N approaches infinity ( and our budget negative infinity), we can get very close to 600 writes per second, increasing system throughput about 5.5 times. However, with only 8 servers, we increased it almost 4 times already.

Note that our computations assumed infitine network bandwidth, and neglected several other factors that could turn out to be signficant on your system. In many cases, you may not be able to make a computation similar to the one above that will accurately predict what will happen on your system if you add N replication slaves. However, answering the following questions should help you decided whether and how much if at all the replication will improve the performance of your system:

Q: How can I use replication to provide redundancy/high availability?

A: With the currently available features, you would have to set up a master and a slave (or several slaves), and write a script that will monitor the master to see if it is up, and instruct your applications and the slaves of the master change in case of failure. Some suggestions:

We are currently working on intergrating an automatic master election system into MySQL, but until it is ready, you will have to create your own monitoring tools .


Go to the first, previous, next, last section, table of contents.